PISA 2012

Evaluating school systems to improve education Embargo until

PISA in brief

- Over half a million students...
- representing 28 million 15-year-olds in 65 countries/economies

... took an internationally agreed 2 -hour test...

- Goes beyond testing whether students can reproduce what they were taught...
... to assess students' capacity to extrapolate from what they know and creatively apply their knowledge in novel situations
- Mathematics, reading, science, problem-solving, financial literacy
- Total of 390 minutes of assessment material
... and responded to questions on...
- their personal background, their schools and their engagement with learning and school
- Parents, principals and system leaders provided data on...
- school policies, practices, resources and institutional factors that help explain performance differences .

PISA in brief

- Key principles

- 'Crowd sourcing' and collaboration
- PISA draws together leading expertise and institutions from participating countries to develop instruments and methodologies...
... guided by governments on the basis of shared policy interests
- Cross-national relevance and transferability of policy experiences
- Emphasis on validity across cultures, languages and systems
- Frameworks built on well-structured conceptual understanding of academic disciplines and contextual factors
- Triangulation across different stakeholder perspectives
- Systematic integration of insights from students, parents, school principals and system-leaders
- Advanced methods with different grain sizes
- A range of methods to adequately measure constructs with different grain sizes to serve different decision-making needs
- Productive feedback, at appropriate levels of detail, to fuel improvement at every level of the system .

Each year OECD countries spend 200bn\$ on math education in school
What do 15-year-olds know... ...and what can they do with what they know?

Mathematics (2012)

High mathematics performance
Mean score ... Shanghai-China performs above this line (613)

Average performance of 15 -year-olds in

26\% of American 15-year-olds do not reach PISA Level 2 (OECD average 23\%, Shanghai 4\%, Japan 11\%, Canada 14\%, Some estimate long-term economic cost to be US\$72 trillion)

Australia
Austria
2012
Belgium
Canada
Chile
Czech Rep.
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Iceland
Ireland
Strong socio-economic
impact on student
performance
Luxembourg
Mexico
Netherland:Sovak Rep.
New Zealand
Norway
Poland
Portugal
Slovak Rep.
Greece
Turkey
Slovenia
Spain
Sweden
Switzerland
Turkey

Chile

UK
US

Australia
Austria
Belgium
Canada
Chile
Czech Rep.
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Iceland
Ireland
Israel
Italy
Japan
Korea
Luxembourg
Mexico
Netherland:3ovak Rep.
New Zealand
Norway
Poland
Portugal
Slovak Rep.
Slovenia
Greece
Turkey
Spain
Sweden
Switzerland
Turkey
C
Chile

UK
US

Austria
Belgium
Canada
Chile
Czech Rep.
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Iceland
Ireland
Singapore

Israel
Italy
Japan
Korea
Luxembourg
Mexico
Netherlands
ovak Rep.
New Zealand
Norway
Poland
Portugal
Slovak Rep.
Slovenia
Spain
Sweden
Switzerland
Turkey
UK
US

Belgium
Canada
Chile
Czech Rep.
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Iceland Ireland
Israel
Italy
Japan
Korea
Luxembourg
Mexico
Netherlands
New Zealand
C Norway
Poland
Portugal
Slovak Rep.
Slovenia
Spain
Sweden
Switzerland
Turkey
UK
US

Belgium
Canada
Chile
Czech Rep.
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Iceland Ireland
Israel
Italy
Japan
Korea
Luxembourg
Mexico
Netherlands
New Zealand
Norway
Poland
Portugal
Slovak Rep.
Slovenia
Spain
Sweden
Switzerland
Turkey
UK
US

Belgium
Canada
Chile
Czech Rep.
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Iceland Ireland
Israel
Italy
Japan
Korea
Luxembourg
Mexico
Netherlands
New Zealand
Norway
Poland
Portugal
Slovak Rep.
Slovenia
Spain
Sweden
Switzerland
Turkey
UK
US

Of the 65 countries... ... 45 improved at least in one subject

Performance of countries in a level playing field

How the world would look if students around the world were living in similar social and economic conditions

- Mean score at the country level before adjusting for socio-economic status
- Mean score at the country level after adjusting for socio economic status

It is not just about poor kids in poor neighbourhoods...

...but about many kids in many neighbourhoods

Gender differences remain

Math teaching \neq math teaching

PISA = reason mathematically and understand, formulate, employ and interpret mathematical concepts, facts and procedures
 츤ㄷ 心 R＝心方

जレN N

응 $\frac{\pi}{\alpha} \underline{=}$

 ぶ
Chinese
邁

Relationship between mathematics performance and students' exposure to applied mathematics

Fig I.3.2

Index of exposure to applied mathematics

The share of immigrant students in OECD countries increased from 9\% in 2003 to 12% in 2012...
...while the performance disadvantage of immigrant students shrank by 11 score points during the same period (after accounting for socio-economic factors)

Change between 2003 and 2012 in immigrant students' mathematics performance - before accounting for students' socio-economic status

\% Socio-economically disadvantaged schools
\triangle Socio-economically advantaged schools

Variability in student mathematics performance

 between and within schools

Disciplinary climate improved

Teacher-student relations improved between 2003 and 2012 in all but one country; and disciplinary climate also improved during the period, on average across OECD countries and in 27 individual countries

In most countries and economies, the disciplinary climate in schools improved between 2003 and 2012

Change between 2003 and 2012 in disciplinary climate in schools

Differences in disciplinary climate explained by students' and schools' socio-economic profile

■ Proportion of variation explained by students' socio-economic status

- Proportion of variation explained by students' and schools' socio-economic status

Countries with large proportions of truants perform worse in mathematics

- Adjusted by per capita GDP

Social and emotional dimensions matter too

Percentage of students who reported "agree" or "strongly agree" with the following statements:

Countries where students have stronger beliefs in their abilities perform better in mathematics

Greater self-efficacy among girls could shrink the gender gap in mathematics performance, particularly among the highest-performing students

Gender gap among the highest-achieving students (90th percentile)

- Gender gap adjusted for differences in mathematics self-efficacy between boys and girls -Gender gap

Percentage of students who reported "agree" or "strongly agree" with the following statements:

I can easily link facts together

I seek explanation for things

I am quick to understand things

I can handle a lot of information

Percentage of students who reported "agree" or "strongly agree" with the following statements:

Score-point difference in mathematics associated with one unit of the index of students' openness to problem solving

- Average student

Students who feel that they can handle a lot of information, seek explanations for things, can easily link facts together, and like to solve complex problems - score 30 points higher in mathematics, on average

-10

Score-point difference in mathematics associated with

 one unit of the index of intrinsic motivation to learn mathematics- Average student

Change in performance per one unit of the index among lowest-achieving students

- Change in performance per one unit of the index among highest-achieving students

Students who believe that learning mathematics is useful perform better

Score-point difference in mathematics associated with one unit of the index of instrumental motivation to learn mathematics
\square Average student
Change in performance per one unit of the index among lowest-achieving students

- Change in performance per one unit of the index among highest-achieving students

Students' sense of belonging

Percentage of students who agree/disagree with the following statements:

- Liechtenstein \quad OECD average

Percentage of students who agree/disagree with the following statements:

Students' attitudes towards school: Learning outcomes

Percentage of students who agree/disagree with the following statements:

Agree: School has taught me things which could be useful in a job

Agree: School has helped give me confidence to make decisions

Disagree: School has been a waste of time

Disagree: School has done little to prepare me for adult life when I leave school

Students and perseverance

Percentage of students who reported that the following statements describe someone "very much like me" or "mostly like me" (*) or "not much like me" or "not at all like me" (**)

■Kazakhstan -OECD average

Agree: I remain interested in the tasks that I start

Disagree: When confronted with a problem, I give up easily

Students' attitudes towards school: Learning outcomes

Percentage of students who agree/disagree with the following statements:

Agree: School has taught me things which could be useful in a job

Agree: School has helped give me confidence to make decisions

Disagree: School has been a waste of time

Disagree: School has done little to prepare me for adult life when I leave school

Percentage of students who reported "agree" or "strongly agree" with the following statements:

Percentage of students who reported "agree" or "strongly agree" with the following statements:

```
\squarePeru - OECD average
```

Mathematics is an important subject for me because I need it for what I want to study later on

Learning mathematics is worthwhile for me because it will improve my career prospects and chances

Making an effort in mathematics is worth it because it will help me in the work that I want to do later on

Percentage of students who feel very confident or confident about having to do the foll owing tasks in mathematics:

- Shanghai-China OECD average

Percentage of students who agree*/disagree** with the following statements:

Agree: In my mathematics class, I understand even the most difficult work

Agree: I have always believed that mathematics is one of my best subjects

Agree: I get good <grades> in mathematics

Disagree: I am just not good at mathematics

Percentage of students who reported "agree" or "strongly agree" with the following statements:

Percentage of students who reported "agree" or "strongly agree" with the following statements:

Agree: School has taught me things which could be useful in a job

Agree: School has helped give me confidence to make decisions

Disagree: School has been a waste of time

Disagree: School has done little to prepare me for adult life when I leave school

Also worth noting

o 85\% of advantaged students but only 78% of disadvantaged students say feel they belong at school
o More than one in three students in OECD countries say they had arrived late for school in the two weeks prior to the PISA test; and more than one in four students reported that they had skipped a class or a day of school during this period
o Better teacher-student relations are strongly associated with greater student engagement at school
o Even when girls perform as well as boys in mathematics, they tend to report less perseverance, less openness to problem solving, less motivation to learn mathematics, less self-belief in their ability to learn mathematics and more anxiety about mathematics than boys, on average; they are also more likely than boys to attribute failure in mathematics to themselves .

The parent factor

Students whose parents have high educational expectations for them tend to report more perseverance, greater intrinsic motivation to learn mathematics, and more confidence in their own ability to solve mathematics problems than students of similar background and academic performance, whose parents hold less ambitious expectations for them.

Percentage-point change in arriving late for school that is associated with parents expecting the child to complete a university degree

Parents' high expectations can nurture students' enjoyment in learning mathematics

Change in the index of intrinsic motivation to learn mathematics that is associated with parents expecting the child to complete a university degree

Change in the index of perseverance that is associated with parents expecting the child to complete a university degree

Schools make a difference

Grade repetition is negatively related to equity

- Adjusted by per capita GDP

5
10
15
20
25
30
35
40

Percentage of students who have repeated at least one grade

- Total cost per repeater (one grade year)
- Total annual cost, relative to total expenditure on primary and secondary education (\%)

In most countries, disadvantaged students are more likely to have repeated a grade than advantaged students

- Socio-economically disadvantaged student (ESCS=-1)
- Socio-economically average student (ESCS = 0)
\triangle Socio-economically advantaged student (ESCS = 1)

o Stratification in school systems (e.g. grade repetition and selecting students at a young age for different "tracks" or types of schools) is negatively related to equity; and students in highly stratified systems tend to be less motivated than those in less-stratified systems

Money makes a difference... ...but only up to a point

Spending per student from the age of 6 to 15 and mathematics performance in PISA 2012

Average spending per student from the age of 6 to 15 (USD, PPPs)

Among high-income countries high-performers pay teachers more

In many countries, more advantaged than disadvantaged students attend after-school lessons

- Percentage of all students participating in after-school lessons
Δ Students in the bottom quarter of socio-economic status
- Students in the top quarter of socio-economic status

Percentage of students in schools whose principals reported that

 the following phenomena hindered student learning "to some extent" or "a lot":

Teacher shortage is more of concern in disadvantaged schools also in public schools, in most countries

- Difference between socio-economically disadvantaged and socio-economically advantaged schools - Difference between public and private advantaged schools

Percentage of students in schools whose principals reported that the following phenomena hindered student learning "not at all" or "very little":

Educational resources are more problematic in disadvantaged

 schools, also in public schools in most countries- Difference between socio-economically disadvantaged and socio-economically advantaged schools
- Difference between public and private advantaged schools

Percentage of students in schools whose principal reported that their schools have the following for quality assurance and improvement:

Difference in mathematics performance, by attendance at pre-primary school

- before accounting for students' socio-economic status
- after accounting for students' socio-economic status

o Educational resources relate to student performance
- 33% of the variation in math performance is explained by differences in principal's responses to questions about the adequacy of science laboratory equipment, instructional material, ICT and libraries (GDP adjusted)
o Adequacy of physical infrastructure unrelated to performance
o Within countries, class time relates positively to performance
- Holds also after accounting for socio-economic and demographic factors, but does not hold when pooling data across countries (learning outcomes are the product of quantity and quality)
- The proportion of students in schools with after-school mathematics lessons is unrelated to system performance
- Homework relates positively to school performance

Also worth noting

o Most countries and economies with comparable data between 2003 and 2012 have moved towards betterstaffed and better-equipped schools
o Students in 2012 were more likely than their counterparts in 2003 to have attended at least one year of pre-primary education

- yet many of the students who reported that they had not attended pre-primary school are disadvantaged

High performers spend resources where they are needed most

Countries with better performance in mathematics tend

 to allocate educational resources more equitably- Adjusted by per capita GDP

Governance matters

Schools with more autonomy over curricula and assessments tend to perform better than schools with less autonomy where they are part of school systems with more accountability arrangements and greater teacher-principal collaboration in school management

Countries that grant schools autonomy over curricula and

 assessments tend to perform better in mathematics

School autonomy for resource allocation x System's level of teachers participating in school management Across all participating countries and economies

School autonomy for curriculum and assessment

 x system's extent of implementing a standardised math policy (e.g. curriculum and instructional materials)

School autonomy for curriculum and assessment x system's level of posting achievement data publicly

Use of achievement data for accountability

Percentage of students in schools that use achievement data in the following ways:

Change between 2003 and 2012 in using student assessment data to monitor teachers

Percentage of students in schools that use assessment data to monitor teachers:

$$
\square 2012 \text { • } 2003
$$

The issue is not how many charter schools a country has...

...but how countries enable every school to assume charter type autonomy

Percentage of students attending

- Government-independent private schools - Government-dependent private schools - Government or public schools

- Observed performance difference

How the theory of school choice squares with the reality in families

If offered a choice of schools for their child, parents consider criteria as "a safe school environment" and "a school's good reputation" more important than "high academic achievement of students in the school".

- Adjusted by per capita GDP

A school's particular approach to teaching is not a determining factor when parents choose a school for their child

Percentage of parents who reported that a particular approach to pedagogy is a very important criterion when choosing a school for their child

- All parents
-Parents in the bottom quarter of socio-economic status
\triangle Parents in the top quarter of socio-economic status

8--

Mexico
Macao-China
Korea
Hong Kong-China
$\stackrel{\imath}{\underline{\dddot{N}}}$
Belgium (FI. Comm.) >

Expenses associated with schooling are a concern among disadvantaged families

Percentage of parents who reported that expenses such as tuition, books, and room and board, are very important criteria when choosing a school for their child

- All parents
- Parents in the bottom quarter of socio-economic status
Δ Parents in the top quarter of socio-economic status
 disadvantaged parents

Percentage of parents who reported that the availability of financial aid, such as a school loan, scholarship or grant, is a very important criterion when choosing a school for their child

- All parents
\bullet Parents in the bottom quarter of socio-economic status
Δ Parents in the top quarter of socio-economic status

For disadvantaged families, physical access

 to school is a significant concernPercentage of parents who reported that the school's distance from home is a very important criterion when choosing a school for their child

- All parents
- Parents in the bottom quarter of socio-economic status
\triangle Parents in the top quarter of socio-economic status

Advantaged families tend to seek out schools whose students are high achievers

Percentage of parents who reported that students' high academic achievement is a very important criterion in choosing a school for their child

- All parents
- Parents in the bottom quarter of socio-economic status
Δ Parents in the top quarter of socio-economic status
 consideration among advantaged families

Percentage of parents who reported that a school's good reputation is a very important criterion when choosing a school for their child

- All parents
-Parents in the bottom quarter of socio-economic status
\triangle Parents in the top quarter of socio-economic status

Advantaged parents tend to seek out schools with an active and pleasant climate

Percentage of parents who reported that an active and pleasant climate is a very important criterion when choosing a school for their child

- All parents
-Parents in the bottom quarter of socio-economic status
\triangle Parents in the top quarter of socio-economic status

Parents everywhere look for a safe school environment for their child

Percentage of parents who reported that a safe school environment is a very important criterion in choosing a school for their child

- All parents
\bullet Parents in the bottom quarter of socio-economic status
\triangle Parents in the top quarter of socio-economic status

$\%$
40
30
20
10

Revolving Door

Correct Answer: in the range from 103 to 105.

Accept answers calculated as $1 / 6^{\text {th }}$ of the circumference ($100 \pi / 3$). Also accept an answer of 100 only if it is clear that this response resulted from using $\pi=3$.
Note: Answer of 100 without supporting working could be obtained by a simple guess that it is the same as the radius (length of a single wing).

This item belongs to the space and shape category. Space and shape encompasses a wide range of phenomena that are encountered everywhere in our visual and physical world: patterns, properties of objects, positions and orientations, representations of objects, decoding and encoding of visual information, navigation and dynamic interaction with real shapes as well as with representations.

SCORING:

Description:	Interpret a geometrical model of a real life situation to calculate the length of an arc
Mathematical content area:	Space and shape
Context:	Scientific
Process:	Formulate

Percent of 15-year-olds who scored Level 6 or Above

Find out more about PISA at www.pisa.oecd.org

- All national and international publications
- The complete micro-level database

Email: Andreas.Schleicher@OECD.org
Twitter: SchleicherEDU
and remember:
Without data, you are just another person with an opinion

Do you have an idea on how to use this data to improve education in your country?

Would you like to work with us to develop that idea?

Apply to the Thomas J. Alexander fellowship programme!

Backup slides

